Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.247
Filtrar
1.
J Nanobiotechnology ; 22(1): 193, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643134

RESUMO

Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/fisiologia , Microbolhas , Neoplasias/tratamento farmacológico , Apoptose , Hidralazina/farmacologia , Hidralazina/uso terapêutico
2.
Nat Commun ; 15(1): 2932, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575577

RESUMO

Ultrasound localization microscopy (ULM) enables deep tissue microvascular imaging by localizing and tracking intravenously injected microbubbles circulating in the bloodstream. However, conventional localization techniques require spatially isolated microbubbles, resulting in prolonged imaging time to obtain detailed microvascular maps. Here, we introduce LOcalization with Context Awareness (LOCA)-ULM, a deep learning-based microbubble simulation and localization pipeline designed to enhance localization performance in high microbubble concentrations. In silico, LOCA-ULM enhanced microbubble detection accuracy to 97.8% and reduced the missing rate to 23.8%, outperforming conventional and deep learning-based localization methods up to 17.4% in accuracy and 37.6% in missing rate reduction. In in vivo rat brain imaging, LOCA-ULM revealed dense cerebrovascular networks and spatially adjacent microvessels undetected by conventional ULM. We further demonstrate the superior localization performance of LOCA-ULM in functional ULM (fULM) where LOCA-ULM significantly increased the functional imaging sensitivity of fULM to hemodynamic responses invoked by whisker stimulations in the rat brain.


Assuntos
Aprendizado Profundo , Microscopia , Ratos , Animais , Microscopia/métodos , Microbolhas , Ultrassonografia/métodos , Microscopia Intravital , Microvasos/diagnóstico por imagem
3.
Nanotheranostics ; 8(3): 285-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577322

RESUMO

Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Lipossomos , Animais , Camundongos , Lipossomos/química , RNA Interferente Pequeno/genética , Microbolhas , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Receptores ErbB/genética , Luciferases
4.
J Transl Med ; 22(1): 320, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555449

RESUMO

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.


Assuntos
Barreira Hematoencefálica , Glioma , Humanos , Ratos , Criança , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Ratos Sprague-Dawley , Tronco Encefálico , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Glioma/radioterapia , Microbolhas , Encéfalo
5.
Int J Pharm ; 655: 124015, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527565

RESUMO

Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.


Assuntos
Neoplasias da Mama , Terapia por Ultrassom , Humanos , Feminino , Microbolhas , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ultrassonografia , Terapia por Ultrassom/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Fósforo , Fenômenos Magnéticos
6.
Theranostics ; 14(5): 1794-1814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505609

RESUMO

Rationale: The acoustic stimulation of microbubbles within microvessels can elicit a spectrum of therapeutically relevant bioeffects from permeabilization to perfusion shutdown. These bioeffects ultimately arise from complex interactions between microbubbles and microvascular walls, though such interactions are poorly understood particularly at high pressure, due to a paucity of direct in vivo observations. The continued development of focused ultrasound methods hinges in large part on establishing links between microbubble-microvessel interactions, cavitation signals, and bioeffects. Methods: Here, a system was developed to enable simultaneous high-speed intravital imaging and cavitation monitoring of microbubbles in vivo in a chorioallantoic membrane model. Exposures were conducted using the clinical agent DefinityTM under conditions previously associated with microvascular damage (1 MHz, 0.5-3.5 MPa, 5 ms pulse length). Results: Ultrasound-activated microbubbles could be observed and were found to induce localized wall deformations that were more pronounced in smaller microvessels and increased with pressure. A central finding was that microbubbles could extravasate from microvessels (from 34% of vessels at 1 MPa to 79% at 3 MPa) during insonation (94% within 0.5 ms) and that this occurred more frequently and in progressively larger microvessels (up to 180 µm) as pressure was increased. Following microbubble extravasation, transient or sustained red blood cell leakage ensued at the extravasation site in 96% of cases for pressures ≥1 MPa. Conclusions: The results here represent the first high-speed in vivo investigation of high-pressure focused ultrasound-induced microbubble-microvessel interactions. This data provides direct evidence that the process of activated microbubble extravasation can occur in vivo and that it is linked to producing microvessel wall perforations of sufficient size to permit red blood cell leakage. The association of red blood cell leakage with microbubble extravasation provides mechanistic insight into the process of microvessel rupture, which has been widely observed in histology.


Assuntos
Membrana Corioalantoide , Microbolhas , Animais , Microscopia , Ultrassonografia/métodos , Microscopia Intravital
7.
Adv Drug Deliv Rev ; 208: 115275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442747

RESUMO

Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.


Assuntos
Sistemas de Liberação de Medicamentos , Terapia por Ultrassom , Humanos , Ultrassonografia , Sistema Nervoso Periférico , Microbolhas
8.
EBioMedicine ; 102: 105066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531173

RESUMO

BACKGROUND: Focused ultrasound (FUS) combined with microbubbles is a promising technique for noninvasive, reversible, and spatially targeted blood-brain barrier opening, with clinical trials currently ongoing. Despite the fast development of this technology, there is a lack of established quality assurance (QA) strategies to ensure procedure consistency and safety. To address this challenge, this study presents the development and clinical evaluation of a passive acoustic detection-based QA protocol for FUS-induced blood-brain barrier opening (FUS-BBBO) procedure. METHODS: Ten glioma patients were recruited to a clinical trial for evaluating a neuronavigation-guided FUS device. An acoustic sensor was incorporated at the center of the FUS device to passively capture acoustic signals for accomplishing three QA functions: FUS device QA to ensure the device functions consistently, acoustic coupling QA to detect air bubbles trapped in the acoustic coupling gel and water bladder of the transducer, and FUS procedure QA to evaluate the consistency of the treatment procedure. FINDINGS: The FUS device passed the device QA in 9/10 patient studies. 4/9 cases failed acoustic coupling QA on the first try. The acoustic coupling procedure was repeatedly performed until it passed QA in 3/4 cases. One case failed acoustic coupling QA due to time constraints. Realtime passive cavitation monitoring was performed for FUS procedure QA, which captured variations in FUS-induced microbubble cavitation dynamics among patients. INTERPRETATION: This study demonstrated that the proposed passive acoustic detection could be integrated with a clinical FUS system for the QA of the FUS-BBBO procedure. FUNDING: National Institutes of Health R01CA276174, R01MH116981, UG3MH126861, R01EB027223, R01EB030102, and R01NS128461.


Assuntos
Barreira Hematoencefálica , Terapia por Ultrassom , Humanos , Ultrassonografia , Acústica , Terapia por Ultrassom/métodos , Microbolhas , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
9.
Int J Cardiol ; 404: 131943, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458386

RESUMO

BACKGROUND: Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS: An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS: UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS: UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.


Assuntos
Insuficiência Cardíaca , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Função Ventricular Esquerda , Microbolhas , Fosfatidilinositol 3-Quinases , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Trifosfato de Adenosina
10.
J Phys Chem B ; 128(12): 2897-2904, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484173

RESUMO

In this computational study, we examine the potential of microbubble-enhanced shock waves to improve the delivery of lipid-siRNA nanoparticles across neuronal plasma membranes with the ultimate aim of enhancing brain tumor treatment. We critically evaluate several variables related to experiments, including the bubble size, the shock speed and action time, and the amount of siRNA encapsulated in the liposome. Our findings reveal that microbubble-enhanced shock waves are essential for the high delivery of small lipid vesicles (under 30 nm diameter); its corresponding variables significantly impact drug penetration and absorption rates and influence the overall efficacy of the drug delivery system. Long-time recovery simulations further provide valuable insights into the self-healing ability of the plasma membrane following shock wave exposure and the subsequent absorption dynamics of siRNA. This work provides the dynamic process of siRNA released from lipid vesicles with shock wave and nanobubbles, thereby serving as a molecular mechanism support for developing tunable delivery systems for RNA-based therapy in brain tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , RNA Interferente Pequeno , Membrana Celular , Lipídeos
11.
J Colloid Interface Sci ; 664: 533-538, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484521

RESUMO

The correct measurement of the resonance frequency and shell properties of coated microbubbles (MBs) is essential in understanding and optimizing their response to ultrasound (US) exposure parameters. In diagnostic and therapeutic ultrasound, MBs are typically surrounded by blood; however, the influence of the medium charges on the MB resonance frequency has not been systematically studied using controlled measurements. This study aims to measure the medium charge interactions on MB behavior by measuring the frequency-dependent attenuation of the same size MBs in mediums with different charge densities. In-house lipid-coated MBs with C3F8 gas core were formulated. The MBs were isolated to a mean size of 2.35 µm using differential centrifugation. MBs were diluted to ≈8×105 MBs/mL in distilled water (DW), Phosphate-Buffered Saline solution (PBS1x) and PBS10x. The frequency-dependent attenuation of the MBs solutions was measured using an aligned pair of PVDF transducers with a center frequency of 10MHz and 100% bandwidth in the linear oscillation regime (7 kPa pressure amplitude). The MB shell properties were estimated by fitting the linear equation to experiments. Using a pendant drop tension meter, the surface tension at the equilibrium of ≈6 mm diameter size drops of the same MB shell was measured inside DW, PBS1x and PBS10x. The surface tension at the C3F8/solution interface was estimated by fitting the Young-Laplace equation from the recorded images. The frequency of the peak attenuation at different salinity levels was 13, 7.5 and 6.25 MHz in DW, PBS1x and PBS-10x, respectively. The attenuation peak increased by ≈140% with increasing ion density. MBs' estimated shell elasticity decreased by 64% between DW and PBS-1x and 36% between PBS-1x and PBS-10x. The drop surface tension reduced by 10.5% between DW and PBS-1x and by 5% between PBS-1x and PBS-10x, respectively. Reduction in the shell stiffness is consistent with the drop surface tension measurements. The shell viscosity was reduced by ≈40% between DW and PBS-1x and 42% between PBS-1x and PBS-10x. The reduction in the fitted stiffness and viscosity is possibly due to the formation of a densely charged layer around the shell, further reducing the effective surface tension on the MBs. The changes in the resonance frequency and estimated shell parameters were significant and may potentially help to better understand and explain bubble behavior in applications.


Assuntos
Meios de Contraste , Microbolhas , Viscosidade , Lipídeos , Concentração Osmolar
12.
Sci Rep ; 14(1): 4831, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413663

RESUMO

Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.


Assuntos
Neoplasias Encefálicas , Glioma , Ratos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Microbolhas , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Glioma/radioterapia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ceramidas/farmacologia , Barreira Hematoencefálica
13.
J Mater Chem B ; 12(10): 2511-2522, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334758

RESUMO

Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.


Assuntos
Meios de Contraste , Microbolhas , Camundongos , Animais , Ultrassonografia/métodos , Polímeros/química , Imagem Multimodal
14.
ACS Appl Bio Mater ; 7(3): 1852-1861, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391393

RESUMO

Ultrasound-based therapy is appealing as it can be used via a wireless approach at remote parts of the body including the brain. Microbubbles are commonly used in such therapy due to their highly sound-responsive property. However, the larger size of microbubbles limits selective targeting in vitro/in vivo. Here, we report the design of nanodroplets of 70-130 nm in size that can be easily converted to microbubbles via ultrasound exposure. The advantage of this approach is that smaller nanodroplets can be used for cell/subcellular targeting, and next, they can be used for therapy by converting to microbubbles. More specifically, folate/dopamine-terminated perfluorohexane nanodroplets are designed that are loaded with a molecular drug. These nanodroplets are used for selective cell targeting, followed by ultrasound-induced microbubble conversion that is associated with drug release and intracellular reactive oxygen species generation. This approach has been used for selective cell therapy applications. The designed nanodroplet and approach can be used for the enhanced therapeutic performance of existing drugs.


Assuntos
Encéfalo , Microbolhas , Movimento Celular , Terapia Baseada em Transplante de Células e Tecidos , Dopamina
15.
Adv Drug Deliv Rev ; 206: 115199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325561

RESUMO

Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Humanos , Ultrassonografia/métodos
16.
Biomater Sci ; 12(6): 1465-1476, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38318975

RESUMO

Sono-photodynamic therapy (SPDT) has emerged as a promising treatment modality for triple negative breast cancer (TNBC). However, the hypoxic tumor microenvironment hinders the application of SPDT. Herein, in this study, a multifunctional platform (MnO2/Ce6@MBs) was designed to address this issue. A sono-photosensitizer (Ce6) and a hypoxia modulator (MnO2) were loaded into microbubbles and precisely released within tumor tissues under ultrasound irradiation. MnO2in situ reacted with the excess H2O2 and H+ and produced O2 within the TNBC tumor, which alleviated hypoxia and augmented SPDT by increasing ROS generation. Meanwhile, the reaction product Mn2+ was able to achieve T1-weighted MRI for enhanced tumor imaging. Additionally, Ce6 and microbubbles served as a fluorescence imaging contrast agent and a contrast-enhanced ultrasound imaging agent, respectively. In in vivo anti-tumor studies, under the FL/US/MR imaging guidance, MnO2/Ce6@MBs combined with SPDT significantly reversed tumor hypoxia and inhibited tumor growth in 4T1-tumor bearing mice. This work presents a theragnostic system for reversing tumor hypoxia and enhancing TNBC treatment.


Assuntos
Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microbolhas , Compostos de Manganês , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Óxidos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia , Porfirinas/farmacologia , Microambiente Tumoral
17.
Ultrasound Med Biol ; 50(5): 680-689, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311538

RESUMO

OBJECTIVE: To explore the effect of ultrasound-stimulated microbubble cavitation (USMC) on enhancing antiangiogenic therapy in clear cell renal cell carcinoma. MATERIALS AND METHODS: We explored the effects of USMC with different mechanical indices (MIs) on tumor perfusion, 36 786-O tumor-bearing nude mice were randomly assigned into four groups: (i) control group, (ii) USMC0.25 group (MI = 0.25), (iii) USMC1.4 group (MI = 1.4) (iv) US1.4 group (MI = 1.4). Tumor perfusion was assessed by contrast-enhanced ultrasound (CEUS) before the USMC treatment and 30 min, 4h and 6h after the USMC treatment, respectively. Then we evaluated vascular normalization(VN) induced by low-MI (0.25) USMC treatment, 12 tumor-bearing nude mice were randomly divided into two groups: (i) control group (ii) USMC0.25 group. USMC treatment was performed, and tumor microvascular imaging and blood perfusion were analyzed by MicroFlow imaging (MFI) and CEUS 30 min after each treatment. In combination therapy, a total of 144 tumor-bearing nude mice were randomly assigned to six groups (n = 24): (i) control group, (ii) USMC1.4 group, (iii) USMC0.25 group, (iv) bevacizumab(BEV) group, (v) USMC1.4 +BEV group, (vi) USMC0.25 +BEV group. BEV was injected on the 6th, 10th, 14th, and 18th d after the tumors were inoculated, while USMC treatment was performed 24 h before and after every BEV administration. We examined the effects of the combination therapy through a series of experiments. RESULTS: Tumor blood perfusion enhanced by USMC with low MI (0.25)could last for more than 6h, inducing tumor VN and promoting drug delivery. Compared with other groups, USMC0.25+BEV combination therapy had the strongest inhibition on tumor growth, led to the longest survival time of the mice. CONCLUSION: The optimized USMC is a promising therapeutic approach that can be combined with antiangiogenic therapy to combat tumor progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Animais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/tratamento farmacológico , Camundongos Nus , Microbolhas , Modelos Animais de Doenças , Perfusão , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico
18.
Theranostics ; 14(3): 1312-1324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323316

RESUMO

Rationale: Cancer treatment outcome is traditionally evaluated by tumor volume change in clinics, while tumor microvascular heterogeneity reflecting tumor response has not been fully explored due to technical limitations. Methods: We introduce a new paradigm in super-resolution ultrasound imaging, termed pattern recognition of microcirculation (PARM), which identifies both hemodynamic and morphological patterns of tumor microcirculation hidden in spatio-temporal space trajectories of microbubbles. Results: PARM demonstrates the ability to distinguish different local blood flow velocities separated by a distance of 24 µm. Compared with traditional vascular parameters, PARM-derived heterogeneity parameters prove to be more sensitive to microvascular changes following anti-angiogenic therapy. Particularly, PARM-identified "sentinel" microvasculature, exhibiting evident structural changes as early as 24 hours after treatment initiation, correlates significantly with subsequent tumor volume changes (|r| > 0.9, P < 0.05). This provides prognostic insight into tumor response much earlier than clinical criteria. Conclusions: The ability of PARM to noninvasively quantify tumor vascular heterogeneity at the microvascular level may shed new light on early-stage assessment of cancer therapy.


Assuntos
Neoplasias , Humanos , Microcirculação , Neoplasias/irrigação sanguínea , Ultrassonografia/métodos , Resultado do Tratamento , Imunoterapia , Microvasos/diagnóstico por imagem , Microbolhas
19.
Ultrasound Med Biol ; 50(5): 671-679, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331697

RESUMO

OBJECTIVE: The color Doppler twinkling artifact has been attributed to existing microbubbles or cavitation occurring on rough objects such as kidney stones, some breast biopsy clips, catheter guidewires and sandpaper. The objective was to investigate the correlation between the surface characteristics of helical constructs with different groove geometries and the occurrence of twinkling, as well as to identify locations conducive to bubble retention and/or cavitation. METHODS: Six half-cylinders were created with a microscale 3-D printer with 5 µm resolution to replicate the geometry of twinkling helical constructs resembling catheter guidewires. Four copies of each marker including a non-twinkling control were printed. The half-cylinders had pitch (peak-to-peak distance) values ranging from 87.5 to 343 µm and amplitude (groove depth) values ranging from 41.5 to 209 µm. The half-cylinders were submerged in degassed water and optically imaged before and after ultrasound insonification to visualize bubbles on the cylinders. The cylinders remained submerged while scanning with the color Doppler mode at frequencies from 3.1 to 6.3 MHz using a GE Logiq E9 scanner and 9L linear array transducer. RESULTS: Two markers exhibited twinkling: one with pitch-to-amplitude ratio of 174/210 µm/µm (0.8) that twinkled only with pre-existing bubbles on the marker; the other had a ratio of 87/87 µm/µm (1.00) that twinkled without pre-existing bubbles on the marker. CONCLUSION: This work provides strong evidence that both existing bubbles and either cavitation or ultrasound wave interactions with patterned or rough surfaces are significant factors in producing the twinkling signature.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/patologia , Ultrassonografia , Ultrassonografia Doppler em Cores/métodos , Imagens de Fantasmas , Microbolhas , Artefatos
20.
J Surg Res ; 296: 603-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350299

RESUMO

INTRODUCTION: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery. This project examined whether luminal delivery of pectin-modified OMB (OMBp5) can reduce ischemic gut injury in a rodent model. METHODS: The OMBp5 formulation was adapted to improve delivery of oxygen along the length of small intestine. Adult Sprague-Dawley rats (n = 24) were randomly allocated to three groups: sham-surgery (SS), intestinal ischemia (II), and intestinal ischemia plus luminal delivery of OMBp5 (II + O). Ischemia-reperfusion injury was induced by superior mesenteric artery occlusion for 45 min followed by reperfusion for 30 min. Outcome data included macroscopic score of mucosal injury, the histological score of gut injury, and plasma biomarkers of intestinal injury. RESULTS: Macroscopic, microscopic data, and intestinal injury biomarker results demonstrated minimal intestinal damage in the SS group and constant damage in the II group. II + O group had a significantly improved macroscopic score throughout the gut mucosa (P = 0.04) than the II. The mean histological score of gut injury for the II + O group was significantly improved on the II group (P ≤ 0.01) in the proximal intestine only, within 30 cm of delivery. No differences were observed in plasma biomarkers of intestinal injury following OMBp5 treatment. CONCLUSIONS: This proof-of-concept study has demonstrated that luminal OMBp5 decreases ischemic injury to the proximal small intestine. There is a need to improve oxygen delivery over the full length of the intestine. These findings support further studies with clinically relevant end points, such as systemic inflammation and vital organ dysfunction.


Assuntos
Isquemia Mesentérica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Roedores , Pectinas , Microbolhas , Isquemia/etiologia , Isquemia/terapia , Isquemia/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/terapia , Isquemia Mesentérica/patologia , Biomarcadores , Mucosa Intestinal/patologia , Intestinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...